
8-bit sounds on
MSX PSG

Summary

In this article is based on article published in MSX Assembly Page [1], where we will
discuss on how it is possible to play a good quality PC 8-bit samples using the native MSX
sound chip, the PSG AY-3-8910-A.

1- Introduction

It was discussed in the article “Digitized sounds for MSX” [2] two ways to digitize
sound for MSX. The first one is made through the PPI keyboard click where only two
values can be discriminated, resulting in a 1-bit sound. The other way is by controlling the
16 levels of PSG volume, resulting in a 4-bit sound. Thus, it is possible to combine the
three PSG channels in a way that the sound resolution increases to 816 levels, making the
sound quality even better. This topic will be explained in the next chapters.

2- MSX volume logarithmic shape

MSX PSG volume control operates in a logarithmic scale. For each two levels of
volume we decrease, we actually decrease the sound amplitude in half [1][3]. The General
Instrument datasheet [3] presents a graphic showing the relationship between the PSG
nominal volume value (digital) and the normalized generated voltage (analog).

Figure 2.1 – PSG digital to analog conversion [3].

The D/A conversion (DAC) formula [1] is presented next.

y=2
−(15−n)

2 formula (1)

Where y denotes the DAC response for the digital volume from 0 to 15.

The formula (1) can be understood by the following way: suppose a set of elements that
increases step by step by a constant ratio. In order calculate an element y of this set by the
index value, we have:

y=ratio
index
step

For example, consider a set of base 2 exponential progression:

1, 2, 4, 8, 16, 32, etc.

The ration between members is constant and the next member has always the double
value of the current member. So, the ratio is 2 and the step is 1.

y=2
i
1=2i

The index value starts at 0. By using the formula, we found for the fourth element of the
set, which index is 3, the value 8.

Now suppose that our set increased the value by 2 for each 3 units. So:

y=2
i
3

The set members are: 1, 1.26, 1,59, 2, 2.52, 3.18; 4, etc

For exponential expressions, the value of y “explodes” as i value increases. In the case
of PSG, the y values are attenuated. In that case, we must replace i by an expression that
decreases the value of the numerator while i increases. In addition, we know that when
i=15, the corresponding DAC value is 1.0. As any number raised by 0 is equal 1, the
expression that replaces i is 15-i.

At last, a negative sign in an exponential expression inverts the value of the ratio. So,
we have the following equivalence:

y=2
−(15−n)

2 =
1
2

15−n
2

Using formula (1), we can calculate all the corresponding DAC and PCM unsigned 8-
bit values for each PSG volume value. The PCM is found multiplying the DAC by 255.
DAC is 0 for PSG volume 0.

PSG volume DAC 8-bit PCM

0 0 0

1 0.0078125 2

2 0.0110485435 3

3 0.015625 4

4 0.0220970869 6

5 0.03125 8

6 0.0441941738 11

7 0.0625 16

8 0.0883883476 23

9 0.125 32

10 0.1767766953 45

11 0.25 64

12 0.3535533906 90

13 0.5 128

14 0.7071067812 180

15 1 255

Table 2.1. PSG to DAC and PCM conversion values.

The backwards formula to calculate the PSG from a DAC value is described next.

As we know:

loga b=X and aX
=b

So:

b=2
−(15−n)

2

Where:
• a = 2
• X = -(15-n) / 2
• b = DAC or y

The unknown here is the variable n.

According to that:

log2 y=
−(15−n)

2

2×log2 y=−15+n

2×log2 y+15=n formula (2)

3- Putting the three PSG channels together

The three PSG channels PSG can be put together, resulting in a sum of each channel
DAC value [1]. Figure 3.1 shows the PSG waveforms for one, two and three PSG channels
used at the same time, playing the Do note (octave 4) and volume 15 for each channel.

Figure 3.1 – PSG response for 1, 2, or 3 channels playing the Do note.

By combining different channels, we get more discrete DAC values than the 16 values
per channel. For example, the DAC value 0.51 can be achieved by the sum of volume 13
(0.50) from channel A and volume 2 (0.01) from channel B [1].

As each channel has 16 levels or 3 bits, putting them together results in 4096 levels or
12 bits. Nevertheless, after eliminating the duplicated levels, remains only 816. This is
quite enough for playing the 256 levels of a PC 8-bit file format.

In the sound file formats presented in [2], the data represent the right values to the
keyboard click or PSG channel volume. For the PCM unsigned 8-bit file, the data value is
PCM and it is necessary to convert it to the right volume combination for each PSG
channel. For such task, a conversion table located in MSX memory will be used, where
each index represents the PCM value and each table's row holds a volume combination for
the three PSG channels.

The challenge now is to find out the best 256 volume combinations subset from the 816
available for the PCM values, where the fit error is the least.

3.1. Building up the conversion table between PCM and PSG

The conversion table between PCM and PSG that will be used in the MSX has 256
entries. Thus, the first step is to create a table with the 816 possible combinations of PSG
volumes that will help us to analyze which is the best 256 subset for the PCM values. The
number 816 comes from the mathematics combination with repetition formula, presented
next.

Cn , p=
(n+p−1)!
k !(n−1)!

formula (3)

Then:

C16,3=
(16+3−1)!
3 !(16−1) !

=
18 !

3 !15!
=

18×17×16×15 !
3 !15 !

=
18×17×16

3×2×1
=

4896
6

=816

The next code is a C adaptation for the program available in [1]. Here, we create a table
with all 816 possible combinations of the three channels of PSG volume.

#include <math.h>

double psg_dac[16];
double psg_table[816][4];
unsigned int map[256];

void psg_values() {
 int n;
 psg_dac[0] = 0;
 for (n=1; n<16; n++)
 psg_dac[n] = pow(2.0, (15n)/2.0);
}

void create_psg_table()
 {
 int p=0, i, j, k;
 for (i=0; i<16; i++) {
 for (j=i; j<16; j++) {
 for (k=j; k<16; k++) {
 psg_table[p][0] = (double) i;
 psg_table[p][1] = (double) j;
 psg_table[p][2] = (double) k;
 psg_table[p][3] = psg_dac[i] + psg_dac[j] + psg_dac[k];
 p++;
 }
 }
 }
}

The table psg_table has the volume of each PSG channel (columns 0 to 2) plus the
corresponding DAC from PSG (column 3), which ranges from 0.0 to 3.0. For each PCM
value, we must find out the PSG DAC value closest to the PCM DAC value in the table.

The next code calculates the best subset of PSG.

void get_best_combinations(double scale) {
 int i, p, best_idx = 0;
 double total_error = 0, dac, diff, min_diff;
 for (i=0; i<256; i++) {
 dac = scale * (i / 255.0);

 best_idx = 0;
 min_diff = fabs(dac psg_table[0][3]);
 for (p=1; p<816; p++) {

 diff = fabs(dac psg_table[p][3]);
 if (diff < min_diff) {
 min_diff = diff;
 best_idx = p;
 }
 }

 map[i] = best_idx;
 total_error += min_diff;
 }

 printf(" Total error: %f\n", total_error);
 printf(" Total error normalized: %f\n", total_error / scale);
}

The PSG DAC value is calculated as follows:

DAC=
PCM
255

formula (4)

The total error is the sum of the errors for all the 256 PCM values. This error will be
used as reference for a little trick used next to find out the best 256 subset from psg_table.

The article [1] suggest us to scale the PCM values from 0.0 to 3.0. By doing that, we
could spread these values through the psg_table in the search of the subset that could return
the least total error. According to that:

DAC=
PCM
255

×scale formula (5)

It is also necessary to normalize the total error value, according to the scale used.

// Normalize error
total_error = total_error / scale;

After performing some tests [1], the article suggests that the best scale values could be
found between 0.5 and 2.5, and the value 1.328 is the one that returned the least error.

4. The PSG 3 channel player analysis

In this chapter we will analyze the PSG 3 channel player proposed by the authors of the
MSX Assembly Page – MAP [1], which will be called here MAP player.

4.1. Graphic analysis for each scale value error calculated

By ranging the scale values from 0.001 to 3.000 and using the step of 0.001, three
graphics were generated (see figure 3.2). The graphic in (a) represents all the scales used.
From the elbow of the curve, we deducted that scale values below 0,25 could be eliminated

to a better visualization of the data. So, we plotted a new graphic in (b). This graphic
suggests us that the scale values between 0.8 and 1.5 should be the better errors values. At
last, a new graphic were plotted in (c) for a even better visualization. The scale value
1,3281 presented the least error (1,16969).

(a) (b) (c)

Figure 4.1 – Graphic analysis for each scale value error calculated.

The next picture shows the 256 PCM levels distribution over the 816 three channel PSG
possible combinations (dark-blue circles) using scale 1.3281. Notice that the PCM data
form a straight line, finishing right before to start the high deforming curve.

Figure 4.2. - PSG levels distribution.

If the scale is greater than 1.3281, the data distribution advances to the right and climbs
the curve (figure 4.2). If it is smaller, the distribution goes to the left. The next figure shows
the PSG DAC response for each PCM unsigned 8-bit value in different scales. Notice what
happens to the higher scales, when the PCM values are over 170.

Figure 4.3. - PSG DAC responses for PCM values in different scales.

Whenever we raise the scale, then sound volume raises. Nevertheless, some distortions
can be seen in higher PCM values. Thus, in all the cases presented in figure 4.3, the PSG
response was always linear. This is a proof that MAP player does well in fixing the
logarithmic PSG response curve issue.

Notice that scale 3.0 (gray line) is quite louder than the good scale 1.3281 (red line).
Must we reject a louder sound in the name of better quality? We will discuss it in the next
section.

4.2. Comparing MAP with different MSX sample players

In this section we will compare MAP player with two other players: MarMSX S4b and
PSG Sampler. The S4b uses only one PSG channel whereas PSG Sampler uses all.

Figure 4.4 compares different PSG responses for PCM unsigned 8bit values for MAP
player (scale 1.3281) and the other players. Figure out that MAP is the only one who had a
linear response.

Figure 4.4. - PSG DAC responses for PCM values for different players.

The next table compares four MAP player scales with the other players using different
criteria. Take in account that for the PSG Sampler, we calculated the error creating a
polygonal fit curve based on PSG Sample DAC curve presented in figure 4.4 (green curve).

Player Scale Total Error Error in Scale Unique Levels PSG Response

MAP Player 1.3281 0.2253 0.1696408403 244 Linear

MAP Player 0.5 0.66705 1.3341 221 Linear

MAP Player 2.5 1.27542 0.510168 193 Linear

MAP Player 3 3.78722 1.2624066667 170 Linear

PSG Sampler 1.3536 3.4309 2.5346483452 64 Exponential

S4b Player 1 6.3228 6.3228 16 Exponential

Table 4.1. Comparing different MSX sample players.

Even for the worst scale 3.0, the MAP player presented better results than the other
tested sample players, if we consider the error in scale, unique levels and PSG response.

Next, we will compare the generated sound waves by the MSX PSG (openMSX
emulator), using the MAP player with scale 3.0 and PSG Sampler for the same PCM sound
file.

Figure 4.5. - Sound waves generated by MAP player and PSG Sampler.

The resulting MAP player wave is quite more similar to the original wave than the PSG
Sampler wave. Notice that for values close to the central line (PCM value equal 128) or
below it, the PSG Sampler wave's distortions are greater.

Credits and references

This article was written by Marcelo Silveira in January 2022, based on the article [1]
published in the MSX Assembly Page.

E-mail: flamar98@hotmail.com
Homepage: http://marmsx.msxall.com

References:

[1] – Playing Samples on the PSG. MSX Assembly Page, at:
http://map.grauw.nl/articles/psg_sample.php (mais atual)
[2] - Digitized sounds for MSX. MarMSX Development, articles at:
http://marmsx.msxall.com

[3] – General Instrument AY-3-8910, AY-3-8912, AY-3-8913 datasheet. Found at:
MSX Assembly Page - http://map.grauw.nl/.

	1- Introduction
	2- MSX volume logarithmic shape
	3- Putting the three PSG channels together
	3.1. Building up the conversion table between PCM and PSG

	4. The PSG 3 channel player analysis
	4.1. Graphic analysis for each scale value error calculated
	4.2. Comparing MAP with different MSX sample players

